



FIGURE 4-4 Hexaxial reference figure for frontal plane axis determination, indicating values for abnormal left and right QRS axis deviations.

in leads I and aVF suggests a normal QRS axis between 0 and 90 degrees.

The six standard precordial leads (V_1 to V_6) are attached to the anterior chest wall (Fig. 4-5). Lead placement should be as follows: V_1 : fourth intercostal space, right sternal border; V_2 : fourth intercostal space, left sternal border; V_3 : midway between V_2 and V_4 ; V_4 : fifth intercostal space, left midclavicular line; V_5 : level with V_4 , left anterior axillary line; V_6 : level with V_4 , left midaxillary line. The chest leads should be placed under the breast

Electrical activity directed toward these leads results in a positive deflection on the ECG. Leads V_1 and V_2 are closest to the right ventricle and interventricular septum, and leads V_5 and V_6 are closest to the anterior and anterolateral walls of the left ventricle. Normally, a small R wave occurs in lead V_1 , reflecting septal

depolarization, along with a deep S wave, reflecting predominantly left ventricular activation. From V_1 to V_6 , the R wave becomes larger (and the S wave smaller) because the predominant forces directed at these leads originate from the left ventricle. The transition from a predominant S wave to a predominant R wave usually occurs between leads V_3 and V_4 .

Right-sided chest leads are used to look for evidence of right ventricular infarction. ST-segment elevation in V_{4R} has the best sensitivity and specificity for making this diagnosis. For right-sided leads, standard V_1 and V_2 are switched, and V_{3R} to V_{6R} are placed in a mirror image of the standard left-sided chest leads. Some groups have advocated the use of posterior leads to increase the sensitivity for diagnosing lateral and posterior wall infarction or ischemia—areas that are often deemed to be *electrically silent* on traditional 12-lead ECGs. To do this, six additional leads are placed in the fifth intercostal space continuing posteriorly from the position of V_6 .

ABNORMAL ELECTROCARDIOGRAPHIC PATTERNS

Chamber Abnormalities and Ventricular Hypertrophy

The P wave is normally upright in leads I, II, and F; inverted in aVR; and biphasic in V_1 . Left atrial abnormality (i.e., enlargement, hypertrophy, or increased wall stress) is characterized by a wide P wave in lead II (0.12 second) and a deeply inverted terminal component in lead V_1 (1 mm). Right atrial abnormality is identified when the P waves in the limb leads are peaked and at least 2.5 mm high.

Left ventricular hypertrophy may result in increased QRS voltage, slight widening of the QRS complex, late intrinsicoid deflection, left axis deviation, and abnormalities of the ST-T segments (see Fig. 4-5A). Multiple criteria with various degrees of sensitivity and specificity for detecting left ventricular hypertrophy are available. The most frequently used criteria are given in Table 4-1.

Right ventricular hypertrophy is characterized by tall R waves in leads V_1 through V_3 ; deep S waves in leads I, aVL, V_5 , and V_6 ;

